
AD-A174 362 INTEGRAL IDENTITIES FOR RANDOM VARIABLES(U) NAVAL /i
POSTGRADUATE SCHOOL MONTEREY CA E B ROCKOUER OCT 86
NPS55-86-8i7

UNCLASSIFIED F/G 12/t L

IIflflflf.......



_2

ROCOPY RESOLUTION TEST CHART
Mt.TIONAt R!IRFAU OF STANDARDS-1I963-A

MIA It



NPS55-86-O1

SNAVAL POSTGRADUATE SCHOOL
Monterey, California

, DTICELECTEft

OV 2 5 1988

TECHNICAL REPORT E-

INTEGRAL IDENTITIES FOR RANDOM VARIABLES

EDWARD B. ROCKOWER

October 1986

LU

LA- Approved for public release; distribution unlimited.

=Prepared for:
Commander, Space and Naval Warfare Systems Command
Washington, D.C. 20363

86 11 25 149



REPORT DOCUMENTATION PAGE
I a ,4 OR' ScLRITY (LAS$iFiCATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
'a SECURITY CLASSIFICATION AUTHORITY 3 DiSTRIBUTION/AVALAdLITY OF REPORT

Approved for public release; distribution
2o DECLASSIiICATION iDOWNGRADING SCHEDULE unl imi ted

4 PERFORMING ORGANiZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NPS55-86-017

ba NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Naval Postgraduate Schoof Code 55

6c ADDRESS (City, Stare, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

lonterey, CA 93943-5000

8a. NAME OF FUNDiNGiSPONSORING J8o OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Space and Naval (If applicable)

Warfare Systems Command PDW 107-5 N0003986WRDJ850
8c. ADDRESS (Ci ty, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM IPROJECT TASK( WORK UNIT
Washington, D. C. ELEMENT NO NO NO. ACCESSION NO

_PE64573N

11 TiLtE (Irlciuce Security Classitcartion)

INTEGRAL IDENTITIES FOR RANDOr VARIABLES (UNCLASSIFIED)

12 PERSONAL AUTHOR(S)
Rockower, Edward B.

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month. Day) 1 PAGE COUNT
Technical I FROM OQLt85 TO October, 1986 21

'6 SUPPLEMENTARY NOTATION

17 COSATi CODES 18 SUBJECT TERMS Continue on reverse it necessary and identify by block numoer)

SFE.D GROUP SUB-GROUP characteristic functions, generating functions,

Ci transforms, moments, identities

19 ABSTRACT (Continue onl reverse if necessary and identify by block number)
Using a general method for deriving identities for random variables, I fifA4 a number of

new results involving characteristic functions and generating functions. The method is
simply to promote a parameter in an integral relation to the status of a random variable
and then take expected values of both sides of the equation. Results include formulas
for calculating the characteristic functions for xC, vx-, /x, x2 + x, ,L = ^+ y, etc.
in terms of integral transforms of the characteristic functions for x and (x,y), etc.
Generalizations to higher dimensions can be obtained using the same method. Expressions
for inverse/fractional moments, E(n;), etc. are also presented, demonstrating the method.

20 DSTR4UTjON/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSFICATION

CMUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT 0 DTIC USERS Unclassified
. 2a NAME OF RESPONSIBLE INDIVIDUAL 22D TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Edward G. Rockower (408)646-2191 1 Code 55Rf

DO FORM 1473,84 MAR 83 APR edition may be used until exnausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.



Aoces3lon For

XTIS GRA&I
DTIC TAB
Uuannounced

Integral Identities for Random Variables Justification

Edward B. Rockower By
Distribution/
NAvailability Codes

Dept. of Operations Research lAvail and/or--

Monterey. CA. 93943 Dist Special

ABSTRACT

Using a general method for deriving identities for random variables, i
1ind a number of new results involving characteristic functions and

generating functions. The method is simply to promote a parameter in

an integral relation to the status of a random variable and then take

expected values of both sides of the equation. Results include formulas

,or caicuating the characteristic functions for x2. JX, l/x x 2 + x, R2

:<2 + j2, etc. iF, terms of integral transforms of the characteristic

fncfl!ions for x 3nd (x, u), etc. Generalizat ons to higher dimensions can

"e oDtaned using '.he same methoc. Expressions for inverse/fractional

morn.et. Ejn!.', etc. are also presented, deronstrating the method.

>. ! 7 RJJI C I .0,

s. well known, it is sometimes easier to study a process us;nq

'-ansforrms of the relevant probabilitq distributions. Such transforms

j: ethe characteristic function, C(&±L)< and the moment generatin

' nCt.n, NV (-), for general random variables; the probability generat'ng

, on, iGiz;, vrr integer valued random variables, and the Laplace

Y":r Df te rolbabi'tij densitg functl.on, /(s). fr no-nega Iye

va,.e random varial:Ies. They often alow one to 1) simp!ifu

manvuations invo;',/ng convo'utLions of probability distributions arising
I -- - - ... - I

,r,jr coiGerton of sumrs of random variables and more compc ial.e'



compound and branching processes, and 2) apply powerful methods from

complex analysis and integral transform theory to the solution of

,lifferential-difference equations which arise in the study of probabilit..

and stochastic processes, and in the analysis of the analytic behavior of

those solutions. The value of techniques for manipulating such

transforms and of "methods for constructing new character isti c

functions out of given ones"' is well known. In fact, the theory of

probability "depends to a large extent on the method of characteristic

unctions"2 . The methods presented here may further aid in the

interpretation of complicated characteristic functions and facilitate the

dentification of independent processes which contribute to the result

see e.g. reference [3). Apart from their usefulness in probabilistic

applications, our results also provide another means of generating new

integral ;dentities from old ones.

4 :,r.,m,:,ting a parameter in an integral expression to the status of a
random varabie (r.v.) and then taking expected values of both sides of

.tre equat r: a number of interesting relations involving characteristic

runc,. generating functions, etc. are found. In general, wnl!e there

is no guarantee that the resulting integrals can be evaiuateC in ciused

.. r. 3r a particular distribution of interest, the expressnn rau be

ie;,ful in numerical work. An analogous technique for qener.-ting

der, te7 c.,ivnq operators in Hiibert space, matrices, etc. nas been

,:t. er a , ed r hysics (e.g. see the Appendix, below). in tne

,roab~ .context similar methods have long been useG to 3olve

;,robers byj averaging .condit.onal results over the conditi':nng variable.

2



A number of identities are presented in Sections 11 - V demonstrating

I.,e_ method of derivation. Some examples of calculations using these

;:entities are then carried out in Section V1. Finally, in Section VII we

comment on the generality of the method.

!I. Relatons involving the Square of R. V. s

.4. Consider the well-known integral expressing the normalization of a

Normal (aka Gaussian) distribution, in which x is an arbitrary constant,

00

eXD[ -(f - x)2 /(20 2) Id = I

-4 Change variables according to, & -- > /(2' ). 11(2C"2) -->i'<, ad

i. dt exp[ i x . ()

'.nw promote : to De a real random variable and take expected values of

,,tr, sides f the equation, assuming that the implicit interchange of

-:ers f :ntegration is justif!ed, i.e. that f and El } commute.

1[ i/(4nf) i Jexp-i2/(46)l C×(t) dt = Cx2(2) . (2)

-_ . rritiCij Eq. ( ' by itself with x -- > u, , -- > . b' -- ' 3, to
' t a1 in,

3t



00

Jfexpf-;E2/(4 6) + it< -iE2 /(4&) +ifUl ae ep OEOE +i ~2

-00

Agar consider x, y to be r.-vis and take expected values of both sides.

CO

II/[4n/(W) I f fexp[- jZ2 /(419) -if 2 /(4&)I C xu(Q.E) dtdE (3)

C C2 2(fS) -

P e nowlet 8 ^Jwe have,

00

-00

R 2 i r'2. This can be generalized further to 3 or more r.v. S

ran anaiogrous manner.

_ .uti!g Eq. (1) by exp( i'tx) and take expected vaiues to oDtamn tne

ch'aracteristic function for X2 +

00

Iti/(47i) I Jexp[-jt2/(4W)I Cx(t + 1) dt CX2+X(') (5)
-00

Again, it is cl--ear that this mna De generalized further.

4
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Mfl. Identities for %/x and 1/x

A. Consider the definite integral (e.g. reference [.1 p. 341),

00

.exp [ -a/ 2 -b$2 /[~=~TT/(4b)] exp-2J (ab)1 6

Let a -- >-:, b -- > S2/- to obtain the identity,

00

(c exp [ -X/ 2 _52r 2/4 i g~ = l/(t) /S eXpf-VXI (7)

Now, promote x to be a non-negative r.v. and average over x, to obtain

the Laplace transform of the pdf of 'x,

00

s/1/i J exp [-s 2 214 I .x( I /Z2 ) d = Z x(s) (8)

0

Atternatively, a similar integral on p. 399 of reference [6] allows one to

e'ress ,/×(s) in terms of the characteristic function, Cx .

To obtain the Laplace transform of the pdf ror the r.v. /, i.e.

g,, riven ., consider the integral 10,

XD[ -a(, Jo(bJ ) d" 1/a exp[ - b2/(4a)1.

rult, lu Doth sides b a and chanqe the parameters b -- v's, a -- >

the late a non-negative r.v., to obtain.

9



rE exp[ -xt ]} Jo[2(s]d z E ep[ - s/×

0

terms of the Laplace transform, this is,

(-) J -x(Z) - JO[ 2I(st) I dt - Ilx(s). (9)

0

v. Identittes for Non-Standard Moments and Averages

A. Consider the elementary integral, where x is just a parameter,

s n-' exp -x s ds = (n-l) / xn.

0

1c:.w promcte x to be a non-negative r.v., whose pdf falls off sufficiently

*aa.dgy as x -- > 0, (e.g. an Erlang(n+l) ) and take expected values x,. t x,

0

4e~nqg x -- > (x + A) leads immeliate!l to the ident ity,

I sn -' exi)(-sA') Z(s) ds = E{ /(xA)n } (ob)

jt~te f,-!r the Laplace trarsform could also be written in terms of

6
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the moment generating function, when it exists. Analogous results for

the moment generating function were also derived in references [41, and

_ using methods similar to the above. Those references also contain

additional applications of this result.

.Consider, now, the integral,

2" ep [ -3 t2 ] d t = J/OT/a) (I)
0

let a --- x, a non-negative r.v., and take expected values,

2//n J Cx(it 2) dt - 2//n Jf.,x(t 2) dt = E(I//fx) (12)

0 0

Making he change of variable to y = t 2 in Eq.(12) results in,

/2/

1/t2 -1 (g) dy E!f'x}

' car De recognized as a fractiona! ntegration of order 1/2 rf the

a.;e transform (or MGF). 5ome of the other moments in tins section

'1:. s.: be written as fractional integro-different!ations of moment

- ,ons or Laplace tr ans,orms. This fact, as well as other

ar, e ated references) are discussed in references L, - _

7



Mu itipDl Eq. (1 1) by a, let a -- > :' and iveraqe, to obtain,

! r E{x exp[-xt 2]} dt = EtL'x}.

0

or, switching to moment generating functions instead of Laplace

transforms for this result (either could be used here),

2/17 J M'x(-t 2 ) dt Eb,/x). (13)

0

This can be generalized to oDtain a formula for E{ xm+l/2 }, with m an

:nteger. in a straightforward manner.

D. Consider Lipschitz's integral10 for the ordinary Bessel function of

z.r.'t orer, JO.

exD [ -as ' Jo(bs) ds 1 /vr(a 2 + b2)

)mrnote a -- > x, a non-negative random variable and take expected

mes c" bOth sides to obtain.

00
Sysx() JO(bs) ds = El I //(X2 + b2 ) }.(14)

0

uCe CvelPi differentiatinq tnis identity wrt the parameter b produces

Sfamily : 4 similar ident flp'

n.8

xi .



E. Consider one form of Bessel's integral for the nth order or.-inaru

ERessel function'0 ,

TT

j ]l/(2-,,) exp[ -n j 0+ i xsin dG

x 'be a r~.and average over all x', to obtain,

7r

E( J1n(x) I /1(21T) f expi -n i 0 1 Cx(sine) do. (15)

-7(

,7learllj, tflis result car, be generaflzed in mang wags, 3nd !s sornewrat

~em~'scr~tof the well-known formula.

_- i/(xt I (W) C\(uw) dco,

~r i, is fne Fourier transform of H(x). The latter eujuation can, ir

-,f~-'c~aerbe simplyj derIved by tak.irq e -pec!.eu ""j'.

-lee esentation of H(x) as the Fourier Transforrm of

I ies Vo Priobabiltu (3. eratin

* 3 qamn the well-known integral USeC 'C' Ce-f

9



Th' fMe let nl be a non-negative integer- vafuec rancorn variab'e and

raeOver n

f 6(z) exp[ -Szl dz E( n1l sn (16)
0

~ cjarYwer, s ::1, this yields E(, n' 1, when it ex.ists, i.e. the

-3, 1, r ans orr -m th Ie ProDabiiity generating funiction, evaluatec at

- -: 'cf. the f actor ia imorments E (nin- )(n,-k

SFor non-,int1eger r.v. 's we can obtain a corresponding

cn s der 1.h.e :ntegral,

je a nor-negative integler valued r.v. and averaQoe,

G (7) Olz E( I /(n+) 1. (17)

0

_73!:zr foilows easily from the power series defirimon of32 nd

.D aLgous to t1he usualI resul fo r 2>n

tri i nteqrai exrs hn saea~ re~ult for the iever)

1 .ormal ditiu in

10



DO

7F 2n expf -Z2/(2CT2 ) I Z (2n -) ,,2n
-00 J(T )

where the double factorial symbol means, e.g., 51 5-31. Again take

averages over n on both sides of the equality,

fG(Z2) expi -Z2/(2012) I dz = E( (2n - 1 )!! (12n ) (18)

and when a = I we have Et (2n - 1)0 1.

D. Co'sder the two integrals, found on p. 3159 of reference [6],

3r j2eIMn o( 7T/2 -(2m - 1)11 / (2m)0i

J sne (sin2 eflM de = (2m)'' / (2m 1

rrq be a r.v. and averaging over ail. values of m on each side or the

above equations, we obtain,

2/7r I G( sin2O dO = E( (2m - 1)!I (2m)!!) (19)

0

and,



7(/2

JsinO G( sin2e ) de Ef (2m)!! / (2m + 1)!!I (20)
0

respectively.

V;. Sko-me Applicat ions of the Identities

A. If x~ has a Normal distribution with zero mean then

C eXp{- 20 2/2).

Putting this in Eq. (2) and performing the integration, we have,

00

CX2(6') = Pi/(4wT^6) ]feXp[-it 2/(46) - 2(12/2 I d&

-00

This is, indeed, recognized as the characteristic function for the X2

distribution with one degree of freedom. (Similarly, if x, y have

ndeDender!t normal distributions with the same value of the variance,

tnat R' = X + y2 has a negative exponential distribution follows
+7rvial~ from Eq. (4).)

Now, let x rave a Normal distribution with non-z--ero mean, ithen

X. ep{p Igi - 202/2).

Substtuting this in Eq. (2) and integrating, yields.

12



00

CX2C(') f1i(45 JeXpt I 1&2/(4' ) - 202/21 d"

-00

=1/4(1 - 21o2a) exp{ j26/( - 210 2 -6) },(22)

wmOcfl is the characteristic function of an offset X2 distribution.

E. Calculaite Ef I/J/x I1 where x has an exponential distribution with

parameter X. In this case the characteristic function of x is,

CY(Z) =X/(\ - I

a c e, substliut!ng this in Eq. (12) we have.

00 00

I .(t 2) dt k 2,r X( t2) dt,

0

3rid, using a standard integral, we obtain,

Ef,]/l/x) = 1Tx. (23)

7'1! is easily verified to be correct by a direct calculatiori. Ef{ Ix )is

al,- easilyj verified to be the result produced by Eq. (13).

CInser' 1ne Laplace transform of the pdf for an exponent iai

'jistributiofl, X/(X + s), into Eq. ( 14), obtaining,

00

E2 /x + b2 ) f X/( + S) .J0 (bs) ds.

0

13



This integral is tabulated on p. 685 in reference [61, resulting in,

El/ x2 + b2 ) } = \Tt/2 [ Ho(bX) - No(bX) 1. (24)

where Ho and No are Struve and Neumann functions, respectively, of

zeroth order (No can be replaced with Yo, the Besse! function of the

second kind). For example, taking b = 4 and X = 1 ( Ho(4) = .1350 1and

Yo(4) = -.01694 )9 we find for the exponential distribution,

E( I//(x2  b2)} = .2387,

which is easily confirmed by direct Gauss-Laguerre integration of the

left-hana-side.

D. We now calculate the average of the nth order Bessel function when x

has a N(O, o) distribution with the use of Eq. (15). After inserting the

characteristic function for a normal distribution, using the trig identity

-. r,,29 -_ cos2e)/2, and again using Bessel's integral identity, this

*.,me for 1 / 2 . Eq. (15) leads to,

E( J,(x)} exp[ -02/4 ln/2(o'2/4), (25)

- even, and zero when n is odd. This expression can be confirmed by

Pvaiuatina the expected value directly with the help of an inteqrai

tabuiated on p. 710 of reference 161.

E. Let G(z) be the generating function for a Poisson distribution,

G(Z exp[n (z- !1.

14



Putting this in Eq. (16) and integrating yields,

E( ni /sn l } !/(s-n exp[-n-] (26)

and, in particular, when s 1,

Etn, } I/(I -n)exp[ -n].

This is easily verified to be correct, as well as the fact that for a

Poisson distribution E{ n' ) is only finite for n < 1.

F. if we substitute the generating function for a Poisson r.v. into

Eq.( 18) and perform the integration, we easily obtain (letting 0 1),

EIl(2n I 1 1//(1 - 2n )exp[-n 1. (27)

,&early, this is finite only for n < 1/2.

L ,galn using the generating function for a Poisson r.v., Eq. (20) yields,

3fter uslng a trigonometric identity for sin29 and Bessel's integral

representation for the Bessel function of zeroth order,

E{ (2mn) / (2m - 1)"1 } exp[ -n / 2 Jo(i n 12)

exp[ -n / 2 1 o( n/2), (28'

where i is the modified Bessel function of zeroth order.

, 15
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v'i. Conclusion

5cme of the foregoing integral identities involving characteristic

functions and generating functions may be derived or ver!fied using other

methods. For example, I originally obtained Eq. (2) by expanding Cx2(6)

;n a lcLaurin series, replacing the derivatives wrt Z by even order

derivatives of Lx) wrt , and re-summing the infinite series. That

derivation, which relies on the existence of all moments, is presented irn

the Appendix. Similarly, the expression for E{l/(n - 1)) follows easily

from integrating, term by term, the infinite series definition of G(z). In

fact, expressions for fractional and/or inverse moments, including some

of those derived in Section IV, have been expressed elsewhere7,8,9 in a

unified manner in terms of fractional integro-differentiations of the

, ,2GF, generalizing the usua'A formulas for moments and factorial

moments.

However, alternate derivations are not readily identified for ali of our

'ntegral relations. The point is, that by presenting our unified treatment

-,:ontaining as a proper subset some of the previously mentioned

,ormalisms) it becomes straightforward to obtain new integral

,.nt~ties for random variables by a jud~cious search of tables of

Fti.egrats such as reference [6]. As a final example, a somewhat

gratuitous result is obtained by consideration of integral no. 3 on p. 3G4

in reference [61,

1 exp -pt)l[ I exp(.-qt) 1 dt T/q cosec pTT/q], q p > 0,
-X or q < p < 0.

16



etq Ip -> x, a rIv in the interval [0, 1I, and average over x,

rix(-t) /[I - exp(-t) I dt =E{ cosec [7Thxl 1. (9

-00

It is clear that many other integral identities for random variables can

L~ 1'e rated in the same manner. The only requirement is that the

impl icit interchange of orders of integration be justified.

4Ac.now~emnts: The author is grateful for advice and encouragement

flrm Profs. E. MlcKenzie, D. Gayer, and P. A. W. Lewis: and to Prof. A.

Lwrance for references [7, 81. This work was partially supported under

i c~~trct romr U. S. Navy, SPAWARS, PDW1O7-5.
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APPENDIX

in thIS appendix an alternate derivation of Eq. (2) is presented, patterned

a;fter that in reference [31 in which it is applied1 to help in the

interpretation of a complicated characteristic function and identify

independent processes which combine to form the final process. The

usual definition for the characteristic function yields,

cx( Z) =E{ exp(i~x) ), and CX2(Z) = E( exp(id'X2) 1. (Al)

We solve the problem: given Cx , to find CX2 .First, note that the ever

moments of x can be expressed alternatively as,

1 1/12 (,/d )2 In Cx) I =O El x2n

or (A2)

/1(da I n C,2 ~ = E{ x2n

~the !hs of these two expressions are equal, assuming the moments

e < St.

We9 can rocw wr!te t.le ordinary McLaurin series for CX2 aS.

00

.1 ~ fl/i(d/d2) Im C,2(05) I X'= (1'6)m /mi 3

m =0

wrici cr rewrlten using Eqs. (A2 ) as,

7 t-Id/dE)2 IM C(LI i)/iA)

m=O

19



Next, re-sum this power series in (dd) 2 to obtain,

r-(~ = exp ( -i 6 (d/d )2 I CX(fl) I(45)

Now, note that,

eXp( 02(0/dX) 2 I f(x) = II(21TC2) j exp{ -(X -X,)
2/(-,0 2) f(X') dx',

which can be verified using the convolution theorem of Fourier

transforms. This equation could also have been obtained directly from

.Eq. (1I) if we promote x to be the operator d/dx, instead of a r.v., and

thlen post-multiply by f(x). Making the change of variables x--

CI >-2!' , and setting =0 we recover Eq. (2).

20-
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